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Abstract 
The knowledge system LIMPACT estimates the pesticide contamination of small lowland 
streams within agricultural catchment areas. The system considers the abundance of 39 
macroinvertebrate taxa during four time frames (T1: March/April, T2: May/June, T3: 
July/August and T4: September/October) within a year. The four diagnoses Not Detected 
(ND), Low (L), Moderate (M) and High (H) pesticide contamination represent a calculated 
annual toxic sum without any specification of the chemical agents. In this paper, we 
present a new model-based implementation of the existing knowledge system LIMPACT 
using set-covering relations including diagnosis exclusions. This type of knowledge base 
outperforms the former rule-based implementation in size and complexity, knowledge 
acquisition costs and explanatory characteristics. We were able to extract a common and 
average appearance of taxa in the specific group of streams. A wide range of common taxa 
with a tendency to more taxa in less severely contaminated streams was observed. Only a 
few taxa indicate exclusively a specific contamination class. For the exclusion conditions 
there was a clear trend for more taxa to exclude streams in the High pesticide 
contamination category than in the other classes. 
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Introduction 
Small streams collectively add up to an enormous length on the landscape level, so that the 
conservation and protection of their aquatic community should be a major concern. In 
catchment areas with agricultural activities, these streams are subject to various stressors. 
During heavy rainfall, runoff from agricultural fields may introduce soil, nutrients, and 
pesticides and increases discharge (Cooper, 1993; Neumann and Dudgeon, 2002). It has 
been shown that the impact of pesticides is an important parameter of influence for the 
aquatic fauna (Liess and Schulz, 1999; Schulz and Liess, 1999). No regular monitoring 
systems have been established for these agricultural non-point sources of pesticides. 
Because of its short-term character (Kreuger, 1995), only rainfall event-controlled 
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sampling methods can reflect such transient pesticide contamination (Liess et al., 1999), 
which makes its detection via chemical analysis costly. 
In this field the use of a biological indicator system brings a number of benefits. The main 
advantage is its easy, cost-efficient application. When used to monitor toxic contamination, 
it additionally indicates the ecotoxicological effect of the contaminant. A biological 
indicator system also provides information on the long-term effects of contamination, 
whereas information from each chemical measurement applies only to the time the 
measurement was taken. 
There is a wide range of biological indicator systems to evaluate water-quality parameters. 
In Great Britain RIVPACS (Wright et al., 1998) predicts the macroinvertebrate fauna to be 
expected at a site in the absence of environmental stress and can be used to evaluate the 
present fauna. In the Netherlands, a similar approach is used for STOWA (Peeters et al., 
1994). In Scotland, the integrated evaluation system SERCON (Boon et al., 1998) and in 
USA the Rapid Bioassessment Protocols (Resh et al., 1995) were developed. In Germany, 
the saprobic index is well established to evaluate the biodegradable organic pollution in 
running waters (Friedrich, 1990). Systems to monitor heavy metals (Wachs, 1998) and 
acidification (Brakke et al., 1994) have been developed. However, no biological indicator 
system has yet estimated the pesticide contamination of small streams via benthic 
macroinvertebrate indicators. 
To fill this gap we developed a biological indicator system that estimates the pesticide 
contamination of small streams. In order to consider the ecological complexity and the 
uncertain knowledge in this domain, we implemented a diagnostic knowledge system. The 
advantages are that knowledge systems utilize uncertain expert knowledge and ideally 
come to the same solution as would the expert. The user has full control over the 
knowledge system, can scrutinize the solution, and interactively change the question trail. 
The database and the development of the rule-based knowledge system LIMPACT (from 
limnology and impact) was presented in (Neumann et al., 2002a; b). 
Here, we present a new implementation of the knowledge base using a set-covering 
approach. The new implementation was motivated by the complex maintainability of the 
rule base of the former implementation. Thus, it was difficult to extend the knowledge base 
by rules for new taxa in conjunction with an appropriate scoring of these rules. In contrast 
to the rule-based approach, set-covering models are intended to minimize the knowledge 
acquisition costs, since models can be built and extended incrementally in a simple 
manner. In this paper a performance comparison of the former rule-based and a new set-
covering implementation, based on the classification accuracy, the complexity of the 
knowledge base, and knowledge acquisition costs, is presented. Furthermore, with the new 
set-covering approach we have been able to extract ecological knowledge about the 
common appearance of the macroinvertebrate biocoenosis in small, pesticide contaminated 
streams. 

The knowledge system LIMPACT 
We developed the knowledge system LIMPACT using the shell-kit D3 
(http://www.d3web.de), which is applicable for diagnostic tasks, provides a web-based 
user interface (d3web) and offers a visual knowledge acquisition environment for a wide 
range of knowledge types (Puppe, 1998; Puppe et al., 2001). The diagnoses of LIMPACT 
estimate the pesticide contamination of small streams. They represent a calculated annual 
toxic sum (for details on types of pesticides see Neumann et al., 2002a) without any 
specification of the chemical agents. Therefore, the vital diagnoses of LIMPACT are four 
classes of pesticide contamination named: Not Detected (ND), Low (L), Moderate (M) and 
High (H) pesticide contamination. The required input parameters (observations) of 
LIMPACT are abundance data for aquatic macroinvertebrate taxa in a stream. We 
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established four time frames for which information about abundance is requested. The time 
frames are T1 (March/April), T2 (May/June), T3 (July/August), and T4 
(September/October). LIMPACT allows abundance values to be entered for these four 
periods of the year for the 39 taxa named in Table 3. Additionally, LIMPACT interprets 
the increasing or decreasing abundance dynamics of each taxon. 
We differentiate between positive indicator (PI) taxa, which indicate contamination by 
high abundance values and positive abundance dynamics, and negative indicator (NI) taxa, 
which exclude contamination and indicate none or low contamination by high abundance 
values and positive abundance dynamics. 
Besides abundance data, LIMPACT evaluates 9 basic water-quality and morphological 
parameters, such as stream size or conductivity of the water, to characterise a given stream. 
For simplification, these parameters are abstracted to qualitative values. These abstractions 
are used for determining the type of stream (for details see Neumann et al., 2002a), 
because LIMPACT only contains knowledge applicable to small lowland streams within 
agricultural catchments and cannot make a distinction between pesticides and other types 
of impact. Hence streams affected by any of the latter factors are excluded to ensure that 
the impact of pesticide is the main stressor to the aquatic macroinvertebrate fauna. At this 
stage, such interfering factors include industrial waste impact, severe organic 
contamination, and extreme chloride or pH values. Additionally, no highland or large 
streams are considered. The potential application of LIMPACT is for annual monitoring of 
streams and would reduce costly chemical analysis to the mandatory cases. Furthermore, it 
could be used to evaluate the success of risk mitigation strategies in the catchment 
designed to reduce the impact of pesticides. The system is available over the internet via 
http://www.limpact.de 

Methods of knowledge engineering 
Ontological knowledge about diagnoses, parameters, and abstractions was used when we 
implemented the two versions (rule-based and set-covering) of the diagnostic knowledge. 
In general, diagnostic knowledge states relations between diagnoses and observations and 
describes how to obtain a diagnosis for a given set of observed parameters. For the 
acquisition of diagnostic knowledge we have to consider the following aspects and 
requirements. 
As mentioned in Puppe (1998), developing diagnostic knowledge systems is still a time- 
and cost-intensive task. A variety of knowledge representations have been designed and 
evaluated to build diagnostic systems effectively, but practical maintenance of such 
systems is still a difficult issue. In general, we can emphasize the following requirements 
for a successful knowledge engineering project: 

• Understandability of the knowledge representation 
The representation is easily and quickly understood by the domain specialist 
(expert). This property enables a quick initiation of the development project. 

• Incremental development characteristics 
For a rapid development cycle it is helpful to start with extremely simple 
knowledge, which can be extended incrementally to increase the diagnostic quality.  

• Maintainability of the implemented knowledge 
The implemented knowledge base needs to be manageable even if the size of the 
system increases. 

• Explanation facilities 
Furthermore, the representation should allow for the generation of comprehensive 
explanations to scrutinise the resulting diagnoses. 
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In the following we present the methods of the two knowledge representations we used for 
developing two versions of the LIMPACT knowledge system. We also compare their 
characteristics with respect to their maintainability and reasoning accuracy.  

The former rule-based approach 
For the first development of the LIMPACT system we applied a heuristic rule-based 
formalism called diagnostic scores (Puppe, 2000) and implemented the rules with the 
shell-kit D3. Here heuristic classification is based on rules of the following kind:  

IF observation OBSi then give diagnosis D the score Z 

The observations OBSi were clearly defined as the abundances of taxa, whereas the 
diagnoses are the graded amount of pesticide contamination in the stream, i.e. Not Detected 
(ND), Low (L), Moderate (M) and High (H). The domain expert estimated certain scores 
(negative or positive) to characterise types of stream contamination on the basis of given 
abundance data or combinations of them. D3 provides a fixed range of seven positive 
(P1=+5% to P7 =+100%) and seven negative (N1=-5% to N7 -100%) scores, which has 
been proven to be useful in various previous applications of D3. Reasoning with scores is 
easy and understandable for the expert: Given a true condition, the corresponding rule fires 
and adds the stated score to the specified diagnosis. The sum of two equal categories is 
aggregated to the next higher category (e.g. P3+P3=P4). A diagnosis about the pesticide 
contamination is established (confirmed), if the aggregation of the given scores exceeds the 
category P5. 
For a detailed description of the development and evaluation of the rule-based version of 
LIMPACT we refer to (Neumann et al., 2002a; b). The system has been operational since 
February 2001 and can be used via the web (http://www.limpact.de). 

The new set-covering approach 
It has been shown that model-based representations are more appropriate for developing 
maintainable and explanatory knowledge systems (David et al., 1993). For the 
development of a model-based approach of LIMPACT we applied set-covering models, 
which allow for an incremental development of diagnostic systems (Baumeister and Seipel, 
2002; Baumeister et al., 2003). Set-covering models describe relations like 

Diagnosis D typically covers observation OBSi. 

These relations are called covering relations and we say that OBSi is covered by diagnosis 
D. As in the former rule-based implementation of LIMPACT, the diagnoses D were 
defined by the four different contamination classes, whereas the observations OBSi are the 
abundances of taxa. 
After implementing simple covering relations for the most typical diagnosis-parameter 
relations we added weights for parameters to the model. With weights we can emphasize 
that some parameters have a more significant diagnostic importance than other parameters, 
e.g. parameters stating clear positive indicators. During a second improvement phase we 
extended the set-covering model by exclusion conditions, which contain knowledge about 
a categorical exclusion of specific contamination classes (e.g. if we did not find an 
increasing abundance of a negative indicator taxon in a highly contaminated stream). 
Reasoning with set-covering models is very simple: Given a set of observed parameters 
OBS, it uses a simple hypothesize–and–test strategy, which picks a hypothesis H (set of 
diagnoses) in the first step and tests it against the given observations in a second step. The 
test is defined by calculating a quality measure, which expresses the covering degree of the 
hypothesis H with respect to the observed findings OBS. The quality measure q of a 
hypothesis H is defined as follows 
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Besides weights and exclusion conditions, set-covering models can be extended by 
similarity measures, complex covering relations and constrained covering relations 
(Baumeister and Seipel, 2002).  

Results 

Size and complexity 
For the implementation of LIMPACT we defined 9 variables (see Neumann et al. 2002a) 
describing the stream (i.e. structural parameters) and 39 variables representing abundances 
of different taxa. Each abundance variable can record abundances for the four defined time 
frames. Furthermore, we specified four diagnoses for the contamination classes of a stream 
as well as a diagnosis for detecting unsuitable streams. This ontological knowledge was 
augmented by diagnostic knowledge represented either by heuristic rules (former 
approach) or by set-covering relations (new approach). 
The former rule-based version of LIMPACT contains 921 diagnostic rules (see Table 1) 
with scores to establish or to de–establish a diagnosis. Diagnostic rules are of the following 
kind: 

IF (Rule Condition C) THEN give diagnosis D score S. 

The complexity of these rules is moderate, which means that the rule condition mostly 
contains between two and four combined single conditions connected by Boolean 
operators (e.g. and, or, not). A single condition evaluates whether a taxon’s abundance is 
above a given threshold, i.e. a single observation. Additionally, for each rule an appropriate 
diagnosis score was defined by the expert. 
For the set-covering knowledge base, we implemented 816 simple covering relations (see 
Table 1) of the following kind: 

Diagnosis D covers the observation of taxon T with abundance A. 

We can see that these relations are simpler than the implemented rules described above. In 
contrast to the rule-base, we only consider one taxon’s abundance information, 
disregarding other taxa also covered by the same diagnosis. We also do not consider scores 
for diagnoses. 
Table 1 gives the complexities of the implemented knowledge in more detail. Whereas the 
last column shows the number of set-covering relations for each contamination class, we 
extended the presentation for the rule-based version. Thus, we depict the overall number of 
diagnostic rules besides the number of covering relations, and display more precisely the 
number of rules with 1 to 7 single conditions in the first columns of the table. Rules with 2-
4 conditions dominate the rule-based version. 
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Table 1: Size of the two implemented rule-based and set-covering knowledge bases for 
each diagnosis. The left side of the table shows the complexity of the rule conditions for 
the rule-based approach in more detail. The last two columns give an overview of the size 
of the rule-based and the set-covering knowledge base. 

Contamination Rule-Based Knowledge Base Set-Covering Knowledge Base
 Number of evaluatable symptoms in rule condition Total Total 
 1 2 3 4 5 6 7   
Not Detected 0 113 82 39 13 3 1 251 212 
Low 0 85 75 38 7 4 1 210 202 
Moderate 1 105 75 44 5 2 2 234 206 
High 1 112 76 28 8 1 0 226 195 

Sum 3 417 311 153 38 16 11 921 815 

 

Knowledge acquisition costs 
Comparing the size of the two knowledge bases, Table 1 shows that the number of 
implemented knowledge elements is comparable. The size of the set-covering knowledge 
base is even a little bit smaller. These characteristics are illustrated by the fact that the 
expert required about six weeks to implement the rule-based version of LIMPACT versus 
two weeks for implementing the set-covering counterpart. 
 
Table 2: Result of the classification of 146 investigations per stream and year using the 
rule-based (RB) and set-covering (SC) implementation of LIMPACT. The measured real 
contamination is given according to the four classes and compared with the percentage of 
cases classified by LIMPACT into the four classes plus not classified. Correct 
classifications are indicated by bold values. The number of cases per contamination class is 
given in parentheses.  
 

classification result (%) 

Not 
Detected 

 
Low 

 
Moderate 

 
High 

not 
classified 

real 
contamination 

RB SC RB SC RB SC RB SC RB SC 

Not Detected 90.4 96.2 0 0 1.9 0 0 0 7.7 3.8
 (52) (47) (50) (-) (-) (1) (-) (-) (-) (4) (2)

Low 16.7 0 80.0 93.3 0 6.7 0 0 3.3 0
 (30) (5) (-) (24) (28) (-) (2) (-) (-) (1) (-)

Moderate 2.5 0 0 2.5 72.5 87.5 7.5 0 17.5 10
 (40) (1) (-) (-) (1) (29) (35) (3) (-) (7) (-)

High 0 0 0 4.2 0 12.5 87.5 79.1 12.5 4.2
 (24) (-) (-) (-) (1) (-) (3) (21) (19) (3) (1)

 

Classification results 
The classification result of both rule-based and set-covering implementation was calculated 
with the same cases that were used to develop the system. This was necessary because no 
independently obtained stream investigations, including macroinvertebrate abundance data 
and chemical pesticide measurements, were available. 
A detailed evaluation is presented by Neumann et al. (2002b) for the rule-based (RB in 
Table 2) implementation. For RB Table 2 shows that the correct diagnosis of the 146 cases 
is established by LIMPACT in 72.5 to 90.4% of the cases, with better results for 
uncontaminated sites. The evaluation showed a very good classification result. Most errors 
occur between ND and Low and on the other hand between Moderate and High 
contamination. A high percentage of cases were not classified. Because of our conservative 
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approach, LIMPACT established no diagnosis instead of a wrong one for cases with 
insufficient data availability. Possible reasons for classification errors and not classified 
cases can be related to uncertainty in the sampling and identification methods and the 
number of sampling dates within a year. The more data the user provides, the more rules 
can be activated. Consequently, the chance of a correct classification increases. 
For the set-covering (SC in Table 2) implementation Table 2 gives the classification result 
for the same 146 cases as for the rule-based approach. The correct diagnosis is found in 
79.1 to 96.2 cases, which is a better classification result than for the rule-based 
implementation. Only the highly contaminated cases show a decline in classification result 
and at the same time an increase in wrong classifications. Additional errors occur between 
the Low and Moderate contamination classes.  

Explanatory characteristics 
The two implementations differ not only in the way the knowledge is represented but also 
in the way new knowledge can be extracted and discovered from the knowledge bases. For 
the rule-based implementation the domain expert found it difficult to gain any new 
insights. The explanatory characteristics are complex because the knowledge is represented 
in small pieces (rules) and is weighted with different scores. In the following, we give only 
four rules as example: 
 

• IF Agabus at T2 in [2; 9] THEN Contamination High P3 
• IF Agabus at T2 > 9 THEN Contamination High N4 
• IF Anabolia at T1 in [0; 80] THEN Contamination High P2 
• IF Anabolia at T1 > 80 THEN Contamination High N3 

 
The different scores to establish (here: P2 and P3) or to de-establish (here: N3 and N4) a 
diagnosis (here: High) make it difficult to obtain a general overview. To extract from the 
rule-based knowledge base how the aquatic community of an average stream with e.g. 
High pesticide contamination appears, the domain expert has to interpret the rule for and 
against the High diagnosis and has to interpret the different scores. 
The set-covering implementation has a better explanatory characteristic, because of its 
more straightforward design. In the following, we give only two covering relations as 
example: 
 

• Contamination High: Agabus at T2 in [2; 9] 
   Anabolia at T1 in [0; 80] 

 
Each covering relation represents a characteristic of the considered contamination class 
(here High). The domain expert simply looks at all covering relations of one specific 
diagnosis and gains an overview. The same is true for exclusion conditions. They represent 
those characteristics that are not the case for the considered contamination class. 
 
Table 3: The 39 indicator taxa of the knowledge system LIMPACT and the type of 
indicator (N = negative; P = positive indicator). For the covering relations, taxa with more 
than 30% appearance in the considered class are marked and for the exclusions, taxa which 
activated more than 10% of the sum of the rest of the classes are marked. 
   Covering Relations Exclusions 
Order Taxon Type of 

Indicator 
ND L M H not

ND 
not 
L 

not 
M 

not 
H 

Turbellaria Dugesia gonocephala N X X      X 
Oligochaeta Erpobdella octoculata P X X X X     
 Glossiphonia complanata N X X X X     
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 Glossiphonia heteroclita P X  X X     
 Tubificidae P X X X X X    
 other Oligochaeta N X       X 
Gastropoda Pisidium sp. N X X X X    X 
 Potamopyrgus antipodarum P    X X    
 Radix ovata P X X X X     
Amphipoda Gammarus pulex P X X X X     
Isopoda Asellus aquaticus N X X X    X  
Plecoptera Nemoura cinerea N        X 
Coleoptera Dytiscidae N X       X 
 Agabus sp. N       X  
 Platambus maculatus N         
 Elmis sp. N  X X      
 Haliplus sp. N         
 Helodes sp. N X X X    X X 
Diptera Ceratopogonidae P   X X     
 Chironomidae "white" N X  X X    X 
 Chironomidae "red" N X X X X   X X 
 Limoniidae N  X X     X 
 Ptychopteridae N        X 
 Simuliidae N X X X     X 
 Tipulidae N      X   
 Other Diptera N X       X 
Ephemeroptera: Baetis vernus N   X     X 
 Baetis sp. N   X      
 Ephemera danica N        X 
Megaloptera: Sialis lutaria N  X X     X 
Trichoptera: Hydropsyche angustipennis N         
 Anabolia nervosa N   X      
 Chaetopteryx villosa N X X      X 
 Halesus radiatus/digitatus P         
 Ironoquia dubia P X        
 Limnephilus lunatus N      X   
 Limnephilus extricatus N      X   
 Limnephilus rhombicus N         
 Plectrocnemia conspersa N         

 

Discovery of ecological knowledge 
Using the set-covering implementation we were able to discover the common 
macroinvertebrate community of an average stream. For each of the four diagnosis classes, 
we analysed which covering relation and which exclusion was activated most frequently. 
For the covering relation we considered those activated in more than 30% of the cases 
within the contamination class and for the exclusion we considered those activated in more 
than 10% of the sum of the rest of the classes. Table 3 indicates which taxa activated the 
most covering relations and exclusions. For the sake of simplicity we do not indicate 
abundance values and do not itemise each single covering relation. Generally speaking, the 
type of the indicator specifies whether the taxon is found in higher abundance in more 
highly contaminated streams (positive indicator) or in uncontaminated streams (negative 
indicator). Bearing in mind all this information, Table 3 illustrates a theoretical average 
community in the four contamination classes. 
As Table 1 shows, we implemented only 8% (212 to 195) fewer covering relations for the 
High contamination class vs. the ND class. Table 3 shows that these covering relations are 
activated by 35% (17 to 11) fewer common taxa in the High contamination class than in 
the ND class. This indicates that in highly contaminated streams fewer taxa are common. 
At the same time the large number of exclusions indicates that in this contamination class 
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16 taxa cannot be found with high abundances. Most common taxa are found in streams 
classified as Moderate, which may indicate highly variable conditions in this type of 
stream. 
The analysis shows that considering the appearance of the common taxa, the stream classes 
look very similar. Eleven taxa appear at least in three diagnoses classes, separated by the 
abundance only. Four taxa clearly indicate the ND class (e.g. Oligochaeta, Dytiscidae), but 
none the H class. Only a few taxa appear in the ND and/or L classes and exclude the H 
class (e.g. Dugesia gonocephala, Oligochaeta) and only Potamopyrgus antipodarum 
indicates the H class and excludes the ND class. Some taxa indicate a specific class by 
their low abundance and exclude the same class by high abundances (e.g. Tubificidae, 
Pisidium sp.). Overall, we found a wide range of common taxa with a tendency towards 
more taxa in less severely contaminated streams. For the exclusion conditions a clear trend, 
with more taxa excluding the more highly contaminated streams, was likewise found. 

Discussion 

Size and complexity  
The reduction of size and complexity of knowledge bases is the main focus of knowledge 
engineering research. Both aspects are crucial for developing and maintaining successful 
knowledge systems. It has been shown that knowledge bases tend to be confusing and 
unmanageable if their size increases and the complexity of the embedded knowledge 
develops excessively. 
Comparison of the knowledge bases presented here shows that the number of covering 
relations in the set-covering approach is only slightly smaller than the number of 
implemented rules in our rule-based system. Nevertheless, the complexity of the modeled 
set-covering knowledge is significantly simpler than the implemented rules-based 
knowledge. When adding rules for taxa to the rule base, we also have to consider the 
associated diagnosis scores. These scores interact with other rules deriving the same 
diagnosis and therefore have to be obtained by thorough analysis. Thus, adding a new rule 
to the knowledge base can demand reconsideration of all rules (and of the associated 
scores) deriving the same diagnosis. In contrast to these interwoven rules, set-covering 
relations can be viewed as isolated knowledge elements without mutual interdependencies. 
For a new taxon we only have to define relevant covering relations for the four diagnoses, 
i.e. contamination classes, and the new taxon. In general, this means that we have to define 
the abundance of the new taxon for each diagnosis, if we expect the taxon to occur with the 
given diagnosis. If available, we can additionally define abundance trends (positive or 
negative) between the time frames T1, T2, T3,T4 for the new taxon and each diagnosis.  

Knowledge acquisition costs 
The costs of knowledge acquisition often can be measured only by the time the domain 
specialist (expert) or engineer had spent in developing the knowledge system. For 
maintenance purposes we also need to consider the time the developer needs to change or 
extend the knowledge base. In our experiences with LIMPACT, the modular 
characteristics of the set-covering relations had a direct impact on knowledge acquisition 
costs. The expert found the set-covering representation easy to understand and to apply to 
the diagnosis problem. In contrast to the rule-based version of LIMPACT, he did not need 
to consider the interconnections between rules deriving the same diagnosis. This 
experience is emphasized by the time the expert spent to develop the two knowledge bases: 
implementing the rule-based knowledge took about 6 weeks vs. 2 weeks for defining the 
set-covering model.  
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Classification results 
It is obvious that the classification accuracy of a diagnostic system is the key factor for its 
user acceptance. A user is more likely to accept that the system cannot supply a diagnosis 
for a particular case, but will lose confidence if the system derives wrong diagnoses in 
some cases. For this reason, a system should not only provide a solution for a given case, 
but furthermore should deliver a “confidence level” for the diagnosis that is obtained. This 
confidence level can depend on the score of the diagnosis or an overall “believability” 
function defined by the developer of the knowledge base. 
As described in the previous section, the classification accuracies of the rule-based and the 
set-covering system are comparable. Nevertheless, the diagnostic system applying set-
covering knowledge outperforms the rule-based version for contamination classes Not 
Detected, Low, and Moderate. The rule-based implementation only outperforms the set-
covering implementation for highly contaminated streams. One can say the rule-based 
version of LIMPACT has no (high) confidence level for streams with contamination 
classes Low and Moderate, while the set-covering implementation has a lower confidence 
level for the diagnosis of highly contaminated streams. Reasons include the fact that we 
have not implemented any covering relations interpreting the absence or the decreasing 
abundance dynamic, which could indicate highly contaminated streams. For the domain 
expert the absence of a taxon or its decreasing abundance is difficult to interpret, because 
the causal connection explicitly to pesticide contamination is uncertain. 

Explanatory characteristics 
The set-covering knowledge base is much more suitable for discovering ecological 
knowledge than the rule-based implementation. The covering relation and the exclusions 
can be easily interpreted as characteristics of the group of streams considered. By 
analysing the frequently used relations we found the common taxa for each contamination 
class. This procedure was simple and fast. For the rule-based knowledge base this would 
have been a time-consuming process, because of the interpretation of the rules and the 
scores. 
Other knowledge representations, such as case-based reasoning, also cause problems in 
finding common and average characteristics of the considered diagnoses classes. For 
implementation they represent a set of characteristics at the same time and therefore cannot 
activate each characteristic separately. In summary, we can say that the model-based 
knowledge representation using a set-covering interpretation is easy to implement. It 
outperforms the rule-based implementation in size, complexity, and maintainability and 
helped the domain expert to discover new ecological knowledge at a higher level. 
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